Chương I - Căn bậc hai. Căn bậc ba

TT

B1: Cho hai số dương x,y thỏa mãn x\(\ge2y\). Tìm GTNN của biểu thức

\(P=\frac{2x^2+y^2-2xy}{xy}\)

B2: Cho các số x,y thỏa mãn điều kiện xy=\(\frac{1}{2}\).Tìm GTNN của biểu thức

\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}\)

B3 Cho a\(\ge4\).Chứng minh \(a^2+\frac{18}{\sqrt{a}}\ge25\)

AH
17 tháng 7 2019 lúc 17:07

Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)

Áp dụng BĐT Cô-si cho các số dương:

\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)

\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$

Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)

Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$

Bình luận (0)
AH
17 tháng 7 2019 lúc 17:33

Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)

Áp dụng BĐT Cô-si :

\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)

\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)

\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)

Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)

Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Bình luận (0)
AH
17 tháng 7 2019 lúc 17:39

Bài 3:

Có: \(a^2+\frac{18}{\sqrt{a}}=\frac{7}{16}a^2+\frac{9}{16}a^2+\frac{18}{\sqrt{a}}\)

Áp dụng BĐT Cô-si:

\(\frac{9}{16}a^2+\frac{18}{\sqrt{a}}\geq 2\sqrt{\frac{9}{16}a^2.\frac{18}{\sqrt{a}}}=\frac{9}{2}\sqrt{2a\sqrt{a}}\geq \frac{9}{2}\sqrt{2.4\sqrt{4}}=18(1)\) do $a\geq 4$

\(\frac{7}{16}a^2\geq \frac{7}{16}.4^2=7(2)\) do $a\geq 4$

Lấy \((1)+(2)\Rightarrow a^2+\frac{18}{\sqrt{a}}\geq 7+18=25\) (đpcm)

Dấu "=" xảy ra khi $a=4$

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
HP
Xem chi tiết
HC
Xem chi tiết
TH
Xem chi tiết
NQ
Xem chi tiết