Phương trình bậc nhất một ẩn

TK

a)(x^2 +2x+1)-x-1 trên 3=6(x+1)^2-5x-5 trên 6

b)(x-1)-2(x-1) trên 3-1 +  (2x-2) trên 2

c)(x-2)^2=(2x-3)^2-(x+1)^2

d)(x-2)(x^2-3x+5)=x^2-2x^2

giúp mik nhanh vs đc mấy câu vs ak

 

NT

a: \(\dfrac{\left(x^2+2x+1\right)-x-1}{3}=\dfrac{6\left(x+1\right)^2-5x-5}{6}\)

=>\(\dfrac{x^2+x}{3}=\dfrac{6\left(x^2+2x+1\right)-5x-5}{6}\)

=>\(\dfrac{2x^2+2x}{6}=\dfrac{6x^2+12x+6-5x-5}{6}\)

=>\(\dfrac{6x^2+7x+1}{6}=\dfrac{2x^2+2x}{6}\)

=>\(6x^2+7x+1=2x^2+2x\)

=>\(4x^2+5x+1=0\)

=>(x+1)(4x+1)=0

=>\(\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{4}\end{matrix}\right.\)

b: Đề thiếu vế phải rồi bạn

c: \(\left(x-2\right)^2=\left(2x-3\right)^2-\left(x+1\right)^2\)

=>\(\left(x-2\right)^2=\left(2x-3-x-1\right)\left(2x-3+x+1\right)\)

=>\(\left(x-2\right)^2=\left(x-4\right)\left(3x-2\right)\)

=>\(3x^2-2x-12x+8=x^2-4x+4\)

=>\(3x^2-14x+8-x^2+4x-4=0\)

=>\(2x^2-10x+4=0\)

=>\(x^2-5x+2=0\)

=>\(x=\dfrac{5\pm\sqrt{17}}{2}\)

d: Sửa đề: \(\left(x-2\right)\left(x^2-3x+5\right)=x^3-2x^2\)

=>\(\left(x-2\right)\left(x^2-3x+5\right)-x^2\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x^2-3x+5-x^2\right)=0\)

=>\(\left(x-2\right)\left(-3x+5\right)=0\)

=>(x-2)(3x-5)=0

=>\(\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\)

Bình luận (0)