Bài 1: a) Tích của 5 số tự nhiên liên tiếp chia hết cho bao nhiêu?
b) tích của 3 số chẵn liên tiếp chia hết cho bao nhiêu?
Bài 2: a) C/m: A=(n-1)(n+1)n2(n2+1)chia hết cho 60
b) Cho A(n)=n(n2+1)(n2+4). Timd điều kiện của n để A(n) chia hết cho 120
Bài 3: C/m với mọi n lẻ
a) n2+4n+3 chia hết cho 8
b)n3+3n2-n-3 chia hết cho 48
Bài 4: C/m: cới mọi n thuộc N
a) 4n+15n-1 chia hết cho 9
b) 10n+18n-28 chia hết cho 27
Bài 5: a) C/m: n4+6n3+11n2+6n chia hết cho 24 với mọi n thuộc N
b) C/m: A= n3(n2-7)2-36n chia hết cho 5040 với mọi n thuộc N
Cần gấp !!!!!!
HELP!!!
THANKS!
Với mọi n thuộc N. CMR:
a. (9 . 10n + 18) chia hết cho 27.
b. (92n + 14) chia hết cho 5.
c. [n(n2 + 1)(n2 + 4) chia hết cho 5.
d. [mn(m2 - n2)] chia hết cho 3 với mọi m, n thuộc Z.
e. (n12 - n8 - n4 + 1) chia hết cho 512
Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF
Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z
Tìm n thuộc Z để;
a, n2 + 2n - 4 chia hết cho 11.
b, 3n - 1 chia hết cho 8 với mọi n.
c, n10 + 1 chia hết cho 10.
Bài 5 : Chứng minh rằng
a)\(\left(n+3\right)^2-\left(n-1\right)^2\) chia hết cho 8 với mọi n ∈ N
b) A = \(\frac{n^5}{120}+\frac{n^4}{12}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\) có giá trị nguyên với mọi n ∈ Z
Tìm n thuộc Z để;
a, n2 - 4n + 29 chia hết cho 5.
b, n2 + 2n + 6 chia hết cho n + 4.
c, n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1.
1. Phân tích đa thức thành nhân tử:
a. x2 - x - 6
b. x4 + 4x2 - 5
c. x3 - 19x - 30
2. Phân tích thành nhân tử:
a. A = ab(a - b) + b(b - c) + ca(c - a)
b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)
c. C = (a + b + c)3 - a3 - b3 - c3
3. Phân tích thành nhân tử:
a. (1 + x2)2 - 4x (1 - x2)
b. (x2 - 8)2 + 36
c. 81x4 + 4
d. x5 + x + 1
4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.
b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.
5. Phân tích các đa thức sau đây thành nhân tử
1. a3 - 7a - 6
2. a3 + 4a2 - 7a - 10
3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc
4. (a2 + a)2 + 4(a2 + a) - 12
5. (x2 + x + 1) (x2 + x + 2) - 12
6. x8 + x + 1
7. x10 + x5 + 1
6. Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
7. Tìm tất cả các số tự nhiên n để:
1. n4 + 4 là số nguyên tố
2. n1994 + n1993 + 1 là số nguyên tố
8. Tìm nghiệm nguyên của phương trình:
1. x + y = xy
2. p(x + y) = xy với p nguyên tố
3. 5xy - 2y2 - 2x2 + 2 = 0
Chứng minh rằng với mọi số nguyên n thì
a) n.(n+3)-(n-1).(n+2) chia hết cho 2
b) (n+2).(n\(^2\)-3n+1)-n(n\(^2\)-n)+3 chia hết cho 5
bài 7: chứng minh rằng
a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c. x^2+2x+2>0 với mọi x
d. x^2-x+1>0 với mọi x
e. -x^2+4x-5<0 với mọi x