Chương I - Căn bậc hai. Căn bậc ba

DN

\(A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

Rút gọn A.Tìm GTLN của A

 

AH
2 tháng 1 2021 lúc 13:00

Lời giải:

ĐK: $x\geq 0; x\neq 1$

\(A=\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{(\sqrt{x}-1)^2}{2}-\frac{\sqrt{x}+2}{(\sqrt{x}-1)^2}.\frac{(\sqrt{x}-1)^2}{2}\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{2(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{2}=\frac{(\sqrt{x}-2)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}+1)}{2(\sqrt{x}+1)}=\frac{-6\sqrt{x}}{2(\sqrt{x}+2)}=\frac{-3\sqrt{x}}{\sqrt{x}+2}\)

Vì $x\geq 0$ nên $3\sqrt{x}\geq 0; \sqrt{x}+2>0$

$\Rightarrow \frac{3\sqrt{x}}{\sqrt{x}+2}\geq 0$

$\Rightarrow A\leq 0$ hay $A_{\max}=0$ khi $x=0$

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
AQ
Xem chi tiết
NP
Xem chi tiết
MN
Xem chi tiết
JY
Xem chi tiết
TT
Xem chi tiết