Chương I - Căn bậc hai. Căn bậc ba

TT

\(A=\left(\dfrac{2a+1}{\sqrt{a^3}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)(đk a lớn hơn bằng 0,a khác 1)

a, rút gọn a

b,tìm a để A=6

LL
19 tháng 9 2021 lúc 20:49

a) \(A=\left(\dfrac{2a+1}{\sqrt{a^3}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\left(đk:a\ge0,a\ne1\right)\)

\(=\dfrac{2a+1-\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left[\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right]\)

\(=\dfrac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(a-\sqrt{a}+1-\sqrt{a}\right)\)

\(=\dfrac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(\sqrt{a}-1\right)^2\)

\(=\sqrt{a}-1\)

b) \(A=\sqrt{a}-1=6\)

\(\Leftrightarrow\sqrt{a}=7\Leftrightarrow a=49\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QT
Xem chi tiết
AQ
Xem chi tiết
CC
Xem chi tiết
QT
Xem chi tiết
NK
Xem chi tiết
NP
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết