\(P=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right]\cdot\dfrac{x^2-x-2}{x^2}\\ P=\dfrac{-x\left(x-2\right)^2-4x^2}{2\left(x^2+4\right)\left(2-x\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\dfrac{x^3+4x}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\dfrac{x\left(x^2+4\right)\left(x+1\right)}{2x^2\left(x^2+4\right)}=\dfrac{x+1}{2x}\)