Ôn tập toán 7

NH

AI GIÚP EM VỚI!....

so sánh

a) 2009/2010 và 2010/2011

b) 2008/2008.2009 và 2009/2009.2010

c) 2016/2017 +2017/2018 và 2016+2017/2016+2017

d) 1/3^400 và 1/4^300

kí hiệu : . = dấu nhân

^ = mũ

DH
24 tháng 6 2017 lúc 17:47

a, \(\dfrac{2009}{2010}\)\(\dfrac{2010}{2011}\)

Ta có:

\(2009.2011=4040099\)

\(2010.2010=4040100\)

\(2009.2011< 2010.2010\)

nên \(\dfrac{2009}{2010}< \dfrac{2010}{2011}\)

b, \(\dfrac{2008}{2008.2009}\)\(\dfrac{2009}{2009.2010}\)

Ta có:

\(\dfrac{2008}{2008.2009}=\dfrac{1}{2009};\dfrac{2009}{2009.2010}=\dfrac{1}{2010}\)

\(\dfrac{1}{2009}>\dfrac{1}{2010}\) nên \(\dfrac{2008}{2008.2009}>\dfrac{2009}{2009.2010}\)

Chúc bạn học tốt!!!

Bình luận (0)
MS
24 tháng 6 2017 lúc 19:59

a)\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(\dfrac{2009}{2010}< 1\)

\(\Leftrightarrow\dfrac{2009}{2010}< \dfrac{2009+1}{2010+1}\Leftrightarrow\dfrac{2009}{2010}< \dfrac{2010}{2011}\)

b)

\(\dfrac{2008}{2008.2009}=\dfrac{1}{2009}\)

\(\dfrac{2009}{2009.2010}=\dfrac{1}{2010}\)

\(\dfrac{1}{2009}>\dfrac{1}{2010}\Leftrightarrow\dfrac{2008}{2008.2009}>\dfrac{2009}{2009.2010}\)

d)

\(\dfrac{1}{3^{400}}=\dfrac{1}{\left(3^4\right)^{100}}=\dfrac{1}{81^{100}}\)

\(\dfrac{1}{4^{300}}=\dfrac{1}{\left(4^3\right)^{100}}=\dfrac{1}{64^{100}}\)

\(81^{100}>64^{100}\Leftrightarrow\dfrac{1}{81^{100}}< \dfrac{1}{64^{100}}\)

Bình luận (5)
H24
24 tháng 6 2017 lúc 20:42

a, Lấy 1 trừ từng phân số.

\(1-\dfrac{2009}{2010}=\dfrac{1}{2010}\)

\(1-\dfrac{2010}{2011}=\dfrac{1}{2011}\)

\(\dfrac{1}{2010}>\dfrac{1}{2011}\) nên \(\dfrac{2009}{2010}< \dfrac{2010}{2011}\).

b, \(\dfrac{2008}{2008.2009}=\dfrac{1}{2009}\)

\(\dfrac{2009}{2009.2010}=\dfrac{1}{2010}\)

\(\dfrac{1}{2009}>\dfrac{1}{2010}\) nên \(\dfrac{2008}{2008.2009}>\dfrac{2009}{2009.2010}\)

c, Ta có:

\(\dfrac{2016}{2017}>\dfrac{2016}{2018}\Rightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}>\dfrac{2016}{2018}+\dfrac{2017}{2018}\)

\(\Rightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}>\dfrac{2016+2017}{2018}\)

\(\dfrac{2016+2017}{2017+2018}=\dfrac{2016+2017}{4035}\)

\(\dfrac{2016+2017}{2018}>\dfrac{2016+2017}{4035}\) nên \(\dfrac{2016}{2017}+\dfrac{2017}{2018}>\dfrac{2016+2017}{2017+2018}\)

d, \(\left(\dfrac{1}{3}\right)^{400}=\left(\dfrac{1}{3}\right)^{4^{100}}=\left(\dfrac{1}{81}\right)^{100}\)

\(\left(\dfrac{1}{4}\right)^{300}=\left(\dfrac{1}{4}\right)^{3^{100}}=\left(\dfrac{1}{64}\right)^{100}\)

\(\left(\dfrac{1}{81}\right)^{100}< \left(\dfrac{1}{64}\right)^{100}\) nên \(\left(\dfrac{1}{3}\right)^{400}< \left(\dfrac{1}{4}\right)^{300}\)

Bình luận (1)

Các câu hỏi tương tự
GA
Xem chi tiết
CT
Xem chi tiết
PA
Xem chi tiết
CN
Xem chi tiết
CN
Xem chi tiết
NT
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
BL
Xem chi tiết