Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập toán 7

PA

Tìm N(2017) biết đa thức N(x)=\(x^{2017}-2018.x^{2016}+2018.x^{2015}-2018.x^{2014}+........-2018.x^2+2018.x-1\)

NT
5 tháng 5 2017 lúc 20:00

Ta có: \(N\left(x\right)=x^{2017}-2018x^{2016}+2018x^{2015}-...-2018x^2+2018x-1\)

\(=x^{2017}-2018\left(x^{2016}-x^{2015}+...+x^2-x\right)-1\)

\(\Rightarrow N\left(2017\right)=2017^{2017}-2018\left(2017^{2016}-2017^{2015}+...+2017^2-2017\right)-1\)

Đặt \(A=2017^{2016}-2017^{2015}+...+2017^2-2017\)

\(\Rightarrow2017A=2017^{2017}-2017^{2016}+...+2017^3-2017^2\)

\(\Rightarrow2018A=2017^{2017}-2017\)

\(\Rightarrow A=\dfrac{2017^{2017}-2017}{2018}\)

\(\Rightarrow N\left(2017\right)=2017^{2017}-2018.\dfrac{2017^{2017}-2017}{2018}-1\)

\(=2017^{2017}-\left(2017^{2017}-2017\right)-1\)

\(=2017^{2017}-2017^{2017}+2017-1\)

\(=2016\)

Vậy N(2017) = 2016

Bình luận (1)
TX
23 tháng 10 2017 lúc 21:08

2018 + x chia hết 23

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
BL
Xem chi tiết
NT
Xem chi tiết
GA
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
NN
Xem chi tiết
CT
Xem chi tiết