A=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{2+5\sqrt{x}}{4-x}\)
ĐKXĐ: x\(\ge0\) ;\(x\ne4\) ;\(x\ne-4\)
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{-\left(2+5\sqrt{x}\right)}{x-4}\)
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
A=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
A=\(\frac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
A=\(\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
A=\(\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
A=\(\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b)ĐKXĐ: \(x\ge0;x\ne4;x\ne-4\)
cho \(\frac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Rightarrow\)\(3\sqrt{x}=2\left(\sqrt{x}+2\right)\)
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow\)\(3\sqrt{x}-2\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)(TM)
vậy x=16