1: Cho a,b,c là độ dài 3 cạnh của 1 tam giác có tổng bằng 1. CMR: \(a^2+b^2+c^2+4abc< \dfrac{1}{2}\)
2: Cho -1<x,y,z<3 và x+y+z=1. CMR: \(x^2+y^2+z^2\le11\)
3: Cho x,y,z là các số \(\ge\)1 . CMR: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
4: Cho x>y và xy=1. CMR: \(\dfrac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
5: Cho a,b,c là độ dài 3 cạnh tam giác:
a)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Giải phương trình
\(\left|x+5\right|-\left|1-2x\right|=x\)
Chứng minh bất đẳng thức
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
Thu gọn biểu thức
\(P=\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-4x^2}+1\right)\)
BÀi: :
1.CMr \(a^2+b^2-2ab\ge0\)
2.Cmr \(\dfrac{a^2+b^2}{2}\ge ab\)
3.Cmr \(a\left(a+2\right)< \left(a+1\right)^2\)
4.Cmr \(m^2+n^2+2\ge2\left(m+n\right)\)
5.Cmr \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) với a,b>0
6.Cmr \(\forall x\in R\) đều là nghiệm của bất phương trình \(x^2-x+1>0\)
7.Cmr \(a^4+b^4+c^4+d^4\ge4abcd\)
8. Cm bất đẳng thức \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\)
9.Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) Chứng minh \(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)
Giải bpt sau
a, \(\left(x+3\right)^2-\left(x-3\right)^2\le3\left(x+1
\right)\)
b, \(2\left(x+3\right).\left(x+4\right)>\left(x-2\right)^2+\left(x-1\right)^2\)
c, \(5x^2-18x+19-\left(2x-3\right)^2>0\)
d, \(\dfrac{\left(3x-2\right)^2}{4}-\dfrac{3\left(x-2\right)}{8}-1>\dfrac{-15x\left(5-3x\right)}{2}\)
e, \(2x^2+2x+2-\dfrac{15\left(x-1\right)}{2}-1>2x\left(x-2,75\right)\)
g, \(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
Giải các bất phương trình.
a) \(\left|x-1\right|+\left|x-2\right|>x+3\)
b) \(\dfrac{2x+1}{x+2}\le1\)
c) \(\left(x+5\right)\left(7-2x\right)>0\)
d) \(\dfrac{2x^2+10x}{1-x}\le0\)
e) \(\dfrac{1}{x+4}\le\dfrac{1}{x-2}\)
1) Cho x,y,z là độ dài 3 cạnh của 1 tam giác có tổng bằng 1. CMR:
\(x^2+y^2+z^2\le11\)
3) Cho x,y,z là các số \(\ge1\). CMR:
a) \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b) \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c) \(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
người ta đã chứng minh được bất đẳng thức sau : \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
Đảng thức xảy ra, tức là |a+b| = |a| + |b|, khi và chỉ khi ab≥0
Áp dụng : giải các phương trình sau :
a) \(\left|x+1\right|+\left|1-x\right|=2\)
b) \(\left|2x-1\right|+2\left|x-1\right|=1\)
c) \(\left|x+2\right|+\left|x-5\right|=7\)
d) \(\left|2x\right|+\left|1-x\right|+\left|3-x\right|=4\)
Giups em vs mn ơi ! :((
Cho \(x,y,z\ge0;x\ne y\ne z\) và \(\left(x+z\right)\left(y+z\right)=1\). Tìm: \(MinP=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\)
cho x,y,z\(\in\left[\dfrac{1}{2};1\right]\) Tìm min , max của
A=\(\dfrac{x+y}{1+z}+\dfrac{y+z}{1+x}+\dfrac{z+x}{1+y}\)