Violympic toán 9

VQ

a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)

b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\)\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)

c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)

d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên

TK
14 tháng 10 2017 lúc 20:57

c.

\(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\)

\(\leftrightarrow\) \(x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+1+x^2+y^2+x^2y^2=2010\)

\(\leftrightarrow\)\(x^2+x^2y^2+2x\sqrt{1+y^2}.y\sqrt{1+x^2}+y^2+x^2y^2=2009\)

\(\leftrightarrow\) \(\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=2009\)

\(\leftrightarrow\) \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=\sqrt{2009}\)

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết
AP
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
MD
Xem chi tiết
NT
Xem chi tiết