Ôn tập toán 7

VH

a ) Tính A = 22017 - ( 22016 + 22015 + ... + 21 + 20 )

b ) Tìm x biết : | x ( x - 4 ) | = x

TK
21 tháng 11 2016 lúc 20:27

a)Đặt \(A=2^{2016}+2^{2015}+...+2^1+2^0\)

\(2A=2\left(1+2+...+2^{2016}\right)\)

\(2A=2+2^2+...+2^{2017}\)

\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)

\(A=2^{2017}-1\) thay vào ta có:

\(A=2^{2017}-\left(2^{2017}-1\right)=2^{2017}-2^{2017}+1=1\)

b)Ta thấy: \(\left|x\left(x-4\right)\right|\ge0\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)

Ta có: \(x\left|x-4\right|=x\left(x\ge0\right)\)

Nếu x=0 thì 0|0-4|=0 (đúng)Nếu x\(\ne\)0 thì ta có \(\left|x-4\right|=1\Leftrightarrow x-4=\pm1\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=3\end{array}\right.\)

Vậy x=0;x=5;x=3 (thỏa mãn)

 

 

 

 

Bình luận (5)
NT
21 tháng 11 2016 lúc 20:32

a) Đặt \(B=2^{2016}+2^{2015}+...+2^1+2^0\)

\(\Rightarrow B=1+2+...+2^{2015}+2^{2016}\)

\(\Rightarrow2B=2+2^2+...+2^{2016}+2^{2017}\)

\(\Rightarrow2B-B=\left(2+2^2+...+2^{2016}+2^{2017}\right)-\left(1+2+...+2^{2015}+2^{2016}\right)\)

\(\Rightarrow B=2^{2017}-1\)

\(A=2^{2017}-B\)

\(\Rightarrow A=2^{2017}-\left(2^{2017}-1\right)\)

\(\Rightarrow A=1\)

Vậy A = 1

 

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
NC
Xem chi tiết
DP
Xem chi tiết
KW
Xem chi tiết
NP
Xem chi tiết
KW
Xem chi tiết
BH
Xem chi tiết
NP
Xem chi tiết
PN
Xem chi tiết