a. ĐKXĐ: \(\frac{5}{3}\le x\le\frac{7}{3}\)
Áp dụng BĐT Bunhiacopxki:
\(T^2=\left(\sqrt{3x-5}+\sqrt{7-3x}\right)\)
\(\le\left(1+1\right)\left(3x-5+7-3x\right)=4\)
\(\Rightarrow T\le2\left(\text{Vì }T>0\right)\)
b.
\(x^2-25=y\left(y+6\right)\)
\(\Leftrightarrow x^2-y^2-6y-9=16\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16=1.16=\left(-1\right)\left(-16\right)=2.8=\left(-2\right)\left(-8\right)\)
TH1: \(\left\{{}\begin{matrix}x-y-3=1\\x+y+3=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{17}{2}\\y=\frac{21}{2}\end{matrix}\right.\left(l\right)\)
TH2: \(\left\{{}\begin{matrix}x-y-3=-1\\x+y+3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{17}{2}\\y=-\frac{11}{2}\end{matrix}\right.\left(l\right)\)
TH3: \(\left\{{}\begin{matrix}x-y-3=2\\x+y+3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=7\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}x-y-3=-2\\x+y+3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)
TH5: \(\left\{{}\begin{matrix}x-y-3=16\\x+y+3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{17}{2}\\y=-\frac{21}{2}\end{matrix}\right.\left(l\right)\)
TH6: \(\left\{{}\begin{matrix}x-y-3=-16\\x+y+3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{17}{2}\\y=\frac{9}{2}\end{matrix}\right.\left(l\right)\)
TH7: \(\left\{{}\begin{matrix}x-y-3=-8\\x+y+3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)
TH8: \(\left\{{}\begin{matrix}x-y-3=8\\x+y+3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)
thử lại
Vậy pt đã cho có nghiệm ...