Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương I - Căn bậc hai. Căn bậc ba

AD

a) Tìm max của T=\(\sqrt{3x-5}+\sqrt{7-3x}\)

b) Tìm nghiệm nguyên: \(x^2-25=y\left(y+6\right)\)

VP
30 tháng 11 2019 lúc 20:34

a. ĐKXĐ: \(\frac{5}{3}\le x\le\frac{7}{3}\)

Áp dụng BĐT Bunhiacopxki:

\(T^2=\left(\sqrt{3x-5}+\sqrt{7-3x}\right)\)

\(\le\left(1+1\right)\left(3x-5+7-3x\right)=4\)

\(\Rightarrow T\le2\left(\text{Vì }T>0\right)\)

b.

\(x^2-25=y\left(y+6\right)\)

\(\Leftrightarrow x^2-y^2-6y-9=16\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16=1.16=\left(-1\right)\left(-16\right)=2.8=\left(-2\right)\left(-8\right)\)

TH1: \(\left\{{}\begin{matrix}x-y-3=1\\x+y+3=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{17}{2}\\y=\frac{21}{2}\end{matrix}\right.\left(l\right)\)

TH2: \(\left\{{}\begin{matrix}x-y-3=-1\\x+y+3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{17}{2}\\y=-\frac{11}{2}\end{matrix}\right.\left(l\right)\)

TH3: \(\left\{{}\begin{matrix}x-y-3=2\\x+y+3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=7\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x-y-3=-2\\x+y+3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)

TH5: \(\left\{{}\begin{matrix}x-y-3=16\\x+y+3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{17}{2}\\y=-\frac{21}{2}\end{matrix}\right.\left(l\right)\)

TH6: \(\left\{{}\begin{matrix}x-y-3=-16\\x+y+3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{17}{2}\\y=\frac{9}{2}\end{matrix}\right.\left(l\right)\)

TH7: \(\left\{{}\begin{matrix}x-y-3=-8\\x+y+3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

TH8: \(\left\{{}\begin{matrix}x-y-3=8\\x+y+3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)

thử lại

Vậy pt đã cho có nghiệm ...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DK
Xem chi tiết
AJ
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
AV
Xem chi tiết
HC
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết