Luyện tập chung trang 25

H24

a)      Tìm đơn thức \(B\) nếu \(4{x^3}{y^2}:B =  - 2xy\).

b)      Với đơn thức B tìm được ở câu a, hãy tìm đơn thức H để \(\left( {4{x^3}{y^2} - 3{x^2}{y^3}} \right):B =  - 2xy + H\) 

HM
12 tháng 1 2024 lúc 21:12

a)

\(4{x^3}{y^2}:B =  - 2xy \Rightarrow B = 4{x^3}{y^2}:\left( { - 2xy} \right) = \left[ {4:\left( { - 2} \right)} \right].\left( {{x^3}:x} \right).\left( {{y^2}:y} \right) =  - 2{x^2}y\)

b)

\(\begin{array}{l}\left( {4{x^3}{y^2} - 3{x^2}{y^3}} \right):B =  - 2xy + H\\ \Rightarrow \left( {4{x^3}{y^2} - 3{x^2}{y^3}} \right):\left( { - 2{x^2}y} \right) =  - 2xy + H\\ \Rightarrow 4{x^3}{y^2}:\left( { - 2{x^2}y} \right) - 3{x^2}{y^3}:\left( { - 2{x^2}y} \right) =  - 2xy + H\\ \Rightarrow  - 2xy + \dfrac{3}{2}{y^2} =  - 2xy + H\\ \Rightarrow H =  - 2xy + \dfrac{3}{2}{y^2} + 2xy = \left( { - 2xy + 2xy} \right) + \dfrac{3}{2}{y^2} = \dfrac{3}{2}{y^2}\end{array}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết