Bài 32. Các quy tắc tính đạo hàm

H24

a) Bằng cách viết \(y = \tan x = \frac{{\sin x}}{{\cos x}}\,\,\,\left( {x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \tan x.\)

b) Sử dụng đẳng thức \(\cot x = \tan \left( {\frac{\pi }{2} - x} \right)\) với \(x \ne k\pi \left( {k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \cot x.\)

HM
24 tháng 8 2023 lúc 11:33

\(a,y'=\left(tanx\right)'=\left(\dfrac{sinx}{cosx}\right)'\\ =\dfrac{\left(sinx\right)'cosx-sinx\left(cosx\right)'}{cos^2x}\\ =\dfrac{cos^2x+sin^2x}{cos^2x}\\ =\dfrac{1}{cos^2x}\\ b,\left(cotx\right)'=\left[tan\left(\dfrac{\pi}{2}-x\right)\right]'\\ =-\dfrac{1}{cos^2\left(\dfrac{\pi}{2}-x\right)}\\ =-\dfrac{1}{sin^2\left(x\right)}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết