a.
ĐKXĐL \(x\ge-\dfrac{1}{3}\)
\(\dfrac{3x}{\sqrt{3x+10}}=\dfrac{3x}{\sqrt{3x+1}+1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{3x+10}=\sqrt{3x+1}+1\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow3x+10=3x+2+2\sqrt{3x+1}\)
\(\Leftrightarrow\sqrt{3x+1}=4\)
\(\Leftrightarrow x=5\)
b.
ĐKXĐ: \(-1\le x\le1\)
\(\Leftrightarrow\dfrac{\left(1+x-1\right)}{\sqrt{1+x}+1}\left(\sqrt{1-x}+1\right)=2x\)
\(\Leftrightarrow\dfrac{x\left(\sqrt{1-x}+1\right)}{\sqrt{1+x}+1}=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{\sqrt{1-x}+1}{\sqrt{1+x}+1}=2\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow\sqrt{1-x}+1=2\sqrt{1+x}+2\)
\(\Leftrightarrow\sqrt{1-x}=2\sqrt{1+x}+1\)
\(\Leftrightarrow1-x=4\left(x+1\right)+1+4\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=-5x-4\) (\(x\le-\dfrac{4}{5}\))
\(\Leftrightarrow16\left(x+1\right)=25x^2+40x+16\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{24}{25}\end{matrix}\right.\)