§4. Các tập hợp số

ND

A= \(\dfrac{1}{5^2}\)+\(\dfrac{2}{5^3}\)+\(\dfrac{3}{5^4}\)+.....+\(\dfrac{n}{5^{n+1}}\)+......+\(\dfrac{11}{5^{12}}\) với n\(\in\)N.chứng minh A<\(\dfrac{1}{16}\)

NM
20 tháng 5 2017 lúc 23:41

\(5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{11}{5^{11}}.\)

\(4A=5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}=B-\dfrac{11}{5^{12}}.\)

\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}.\)

\(4B=5B-B=1-\dfrac{1}{5^{11}}\)

\(\Rightarrow4A=\dfrac{1}{4}\left(1-\dfrac{1}{5^{11}}\right)-\dfrac{1}{5^{12}}< \dfrac{1}{4}\Rightarrow A< \dfrac{1}{16}\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
GB
Xem chi tiết
NC
Xem chi tiết
Xem chi tiết
NH
Xem chi tiết
NQ
Xem chi tiết