Ôn tập toán 7

NA

a, Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\left(b>0,d>0\right)thì\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b, Hãy viết 3 số hữu tỉ xen giữa \(-\frac{1}{3}và-\frac{1}{4}\)

Khỏi làm ra cũng được, vì cách làm mình biết rồi, nhưng mà nhìn vô thì ko hiểu, ai giúp mình hiểu từng lời giải của BT này với

HN
3 tháng 9 2016 lúc 11:10

a/ Xét : \(\frac{a}{b}< \frac{a+c}{b+d}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow ab+ad< ab+bc\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (đúng)

\(\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow ad+cd< bc+cd\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (đúng)

Vậy ta có đpcm

b/ Giả sử các số cần tìm là \(-\frac{1}{3}< x< y< z< -\frac{1}{4}\)

Tìm các số dựa theo ý a)

Bình luận (1)
TT
3 tháng 9 2016 lúc 11:34

+ CM \(\frac{a}{b}< \frac{a+c}{b+d}\)

Ta có:\(\frac{a}{b}< \frac{c}{d}=>ad< bc\) (vì b> 0 , d > 0)

                      =>  ad + ab < bc + ab

                      => a(b + d) < b(a+c)

                      => \(\frac{a}{b}< \frac{a+c}{b+d}\left(đpcm\right)\) (1)

+ CM \(\frac{a+c}{b+d}< \frac{c}{d}\)

Ta có: \(\frac{a}{b}< \frac{c}{d}\) => ad < bc

                       => ad + cd < bc + cd

                       => d(a+c) < c(b+d)

                       => \(\frac{c}{d}>\frac{a+c}{b+d}\left(đpcm\right)\)  (2)

Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (Với \(\frac{a}{b}< \frac{c}{d}\) )

b) Viết 3 phân số xen giữa \(-\frac{1}{3}\) và \(-\frac{1}{4}\): -3/10 ; -2/7; -3/11

 

 

 

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
NA
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
Xem chi tiết
LH
Xem chi tiết