Ôn tập toán 7

PH

a. Cho tích 800 số tự nhiên từ 1 đến 800 là A= 1.2.3.4.5...800. Khi phân tích A ra thừa số nguyên tố thì A chứa thừa số nguyên tố 3. Tìm số mũ của 3.

b. Cho \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\) (với \(a,b,c,d\ne0;b\ne\pm d\). Chứng minh \(\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)

NT
25 tháng 8 2017 lúc 22:54

Ôn tập toán 7

Bình luận (0)
NT
25 tháng 8 2017 lúc 23:04

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{2a}{2b}=\dfrac{2c}{2d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\dfrac{\left(bk\right)^{2017}-\left(dk\right)^{2017}}{b^{2017}-d^{2017}}=\dfrac{b^{2017}k^{2017}-d^{2017}k^{2017}}{b^{2017}-k^{2017}}=\dfrac{k^{2017}\left(b^{2017}-d^{2017}\right)}{b^{2017}-d^{2017}}=k^{2017}\left(1\right)\)

\(k=\dfrac{a}{b}\Rightarrow k^{2017}=\left(\dfrac{a}{b}\right)^{2017}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)

Bình luận (0)
MS
26 tháng 8 2017 lúc 4:41

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(2\right)\)

Từ (1) và (2) ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\dfrac{b^{2017}k^{2017}-d^{2017}k^{2017}}{b^{2017}-d^{2017}}=\dfrac{k^{2017}\left(b^{2017}-d^{2017}\right)}{b^{2017}-d^{2017}}=k^{2017}\)\(\left(\dfrac{a}{b}\right)^{2017}=\dfrac{a^{2017}}{b^{2017}}=\dfrac{b^{2017}k^{2017}}{b^{2017}}=k^{2017}\)

\(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
TN
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
SK
Xem chi tiết
HN
Xem chi tiết
TM
Xem chi tiết
CT
Xem chi tiết
CA
Xem chi tiết