Ôn tập toán 7

TH

a) Cho đa thức A(x) = x15- 15x14+15x13-15x12+...+15x3-15x2+15x-15. Tính A(14).

b) Cho đa thức f(x) thỏa mãn điều kiện : x.f(x-4) = (x-2).f(x).Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.

NT
9 tháng 5 2017 lúc 12:07

Vì x=14 nên x+1=15

Thay 15=x+1 vào A(x) ta có:

A(x)= x15-(x+1)x14+(x+1)x13-(x+1)x12+...+(x+1)x3-(x+1)x2+(x+1)x-15

= x15-x15-x14+x14+x13-x13-x12+...+x4+x3-x3-x2+x2-x-15

= x-15

=> A(14) = 14-15=-1

Vậy A(14) = -1

Bình luận (2)
NT
9 tháng 5 2017 lúc 12:23

b.* Với x=0 ta có:

0.f(-4)=-2.f(0)

=> 0=-2.f(0) => f(0)=0

=> đa thức f(x) có 1 nghiệm là 0 (1)

* với x=2 ta có: 2.f(-2)=0.f(2)

=> 2.f(2)=0 => f(2)=0

=> 2 là nghiệm của đa thức f(x) (2)

Từ (1) và (2) => đa thức f(x) có ít nhất 2 nghiệm

Bình luận (2)

Các câu hỏi tương tự
TP
Xem chi tiết
TG
Xem chi tiết
HG
Xem chi tiết
VK
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
KH
Xem chi tiết