Bạn tham khảo tại đây:
Câu hỏi của Đinh Diệp - Toán lớp 9 | Học trực tuyến
Bạn tham khảo tại đây:
Câu hỏi của Đinh Diệp - Toán lớp 9 | Học trực tuyến
Cho \(A=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\) với x \(\ge\) 0. Rút gọn A. Tìm GTNN và GTLN của A
a) Cho a,b>0 chứng minh \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\ge\)\(\frac{4}{a+b}\)
b) Cho x,y,z>0 thỏa mãn x+y+z=1 tìm:
GTLN của M = \(\frac{5}{xy+yz+zx}\)+\(\frac{2}{x^2+y^2+z^2}\)
1. Cho A = \(\frac{x-3}{\sqrt{x-1}+\sqrt{2}}\). Tìm GTNN của A
2. Cho B = \(\frac{6-x-\sqrt{x}}{\sqrt{x}+3}\). Tìm GTLN của B
3. Cho C = \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}^{ }}\right)\)tất cả bình phương . \(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\). Tìm a để C >0, Tìm a để C = -2
HELP MEEEEE
Cho biểu thức : A=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a/ Tìm tập xác định của biểu thức A
b/ Rút gọn biểu thức A
c/Chứng minh rằng A> 0 với mọi x \(\ne\) 1
d/Tìm x để A đạt GTLN, tìm GTLN đó
Bài 27 : Cho biểu thức A = \(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\) và B = \(\frac{\sqrt{x}+3}{\sqrt{x}-2}\) (x≥0; x≠4)
a. Tính B tại x = \(\frac{1}{4}\)
b. Rút gọn A
c. Tìm m để A.m=4
d. Với M=A.B, chứng minh M>-4
Cho a, b, c > 0 thỏa mãn ab + bc + ca = 3. CMR :
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
1) Tìm x biết
a) \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9x-45}=4\)
b) \(\sqrt{16x-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
c) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
1.Cho A=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)với x≥0, x≠9, x≠4
a, rút gọn A
b, tìm x để A∈Z
c, tìm x để A<0
2.cho biểu thức A=\(\frac{\sqrt{x-1-2\sqrt{x}-2}}{\sqrt{x-2}-1}\left(x\ge2,x\ne3\right)\)
a, rút gọn A
b, tính A khi x=6
Mn giúp mình với ạ :33
1. Cho a,b,c > 0 thỏa mãn: \(3a\left(a+b+c\right)=bc\)
Tìm GTNN: \(P=\frac{b+c}{a}\)
2. Cho a,b,c > 0
CM: \(\frac{1}{a^3}+\frac{a^3}{b^3}+b^3\ge\frac{1}{a}+\frac{a}{b}+b\)