Chương I : Số hữu tỉ. Số thực

HG

a, cho A = \(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\). tìm x để A có giá trị nguyên ( x ϵ Z)

b, Thực hiện phép tính: {[(2\(\sqrt{2}\))\(^2\) : 2,4] x [5,25 : (\(\sqrt{7}\))\(^2\)]} : {[2\(\dfrac{1}{7}\) : \(\dfrac{\left(\sqrt{5}\right)^2}{7}\)] : [2\(^2\) : \(\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\)]}

 

 

NT
24 tháng 12 2023 lúc 10:36

a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)

=>\(4⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=>\(x\in\left\{16;4;25;1;49\right\}\)

b: loading...

loading...

Bình luận (0)