a) Ta có: \(\frac{x}{y}=\frac{3}{5}.\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}.\)
Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Lại có: \(A=\frac{5x^2+3y^2}{10x^2-3y^2}.\)
Thay \(x=3k\) và \(y=5k\) vào A, ta được:
\(A=\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}\)
\(\Rightarrow A=\frac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}\)
\(\Rightarrow A=\frac{45k^2+75k^2}{90k^2-75k^2}\)
\(\Rightarrow A=\frac{120k^2}{15k^2}\)
\(\Rightarrow A=\frac{120}{15}\)
\(\Rightarrow A=8.\)
Vậy \(A=8.\)
Chúc bạn học tốt!