Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

AD

\(8x^4-8x^3-4x^2+3x+1=0\). giải phương trình

NT
28 tháng 9 2020 lúc 17:49

Ta có: \(8x^4-8x^3-4x^2+3x+1=0\)

\(\Leftrightarrow8x^3\left(x-1\right)-\left(4x^2-3x-1\right)=0\)

\(\Leftrightarrow8x^3\left(x-1\right)-\left(4x^2-4x+x-1\right)=0\)

\(\Leftrightarrow8x^3\left(x-1\right)-\left[4x\left(x-1\right)+\left(x-1\right)\right]=0\)

\(\Leftrightarrow8x^3\left(x-1\right)-\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x^3-4x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x^3+4x^2-4x^2-2x-2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[4x^2\left(2x+1\right)-2x\left(2x+1\right)-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)\left(4x^2-2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\\4x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-1\\\left(2x\right)^2-2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}-\frac{5}{4}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\\left(2x-\frac{1}{2}\right)^2=\frac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\2x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\2x-\frac{1}{2}=\frac{-\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\2x=\frac{\sqrt{5}+1}{2}\\2x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\x=\frac{\sqrt{5}+1}{4}\\x=\frac{1-\sqrt{5}}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\frac{1}{2};\frac{\sqrt{5}+1}{4};\frac{1-\sqrt{5}}{4}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NC
Xem chi tiết
HL
Xem chi tiết
BA
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
BS
Xem chi tiết
TN
Xem chi tiết