Ta có: \(8x^4-8x^3-4x^2+3x+1=0\)
\(\Leftrightarrow8x^3\left(x-1\right)-\left(4x^2-3x-1\right)=0\)
\(\Leftrightarrow8x^3\left(x-1\right)-\left(4x^2-4x+x-1\right)=0\)
\(\Leftrightarrow8x^3\left(x-1\right)-\left[4x\left(x-1\right)+\left(x-1\right)\right]=0\)
\(\Leftrightarrow8x^3\left(x-1\right)-\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^3-4x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^3+4x^2-4x^2-2x-2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[4x^2\left(2x+1\right)-2x\left(2x+1\right)-\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)\left(4x^2-2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\\4x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-1\\\left(2x\right)^2-2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}-\frac{5}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\\left(2x-\frac{1}{2}\right)^2=\frac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\2x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\2x-\frac{1}{2}=\frac{-\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\2x=\frac{\sqrt{5}+1}{2}\\2x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\\x=\frac{\sqrt{5}+1}{4}\\x=\frac{1-\sqrt{5}}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\frac{1}{2};\frac{\sqrt{5}+1}{4};\frac{1-\sqrt{5}}{4}\right\}\)