Ôn tập chương I

HH

4. chứng tỏ rằng : 3 mũ 0+ 3 mũ 1+ 3 mũ 2+ 3 mũ 3 ..............+ 3 mũ 11 chia hết cho 40

H24
3 tháng 1 2018 lúc 12:26

Ta có: 3^0 + 3^1 + 3^2 + 3^3 + ... + 3^11

= ( 3^0 + 3^1 + 3^2 + 3^3 ) + ... + ( 3^8 + 3^9 + 3^10 + 3^11 )

= 40 + ... + 3^8 . ( 3^0 + 3^1 + 3^2 + 3^3 )

= 40 + ... + 3^8 . 40

= 40 . ( 1 + ... + 3^8 ) \(⋮\)40

~ Chúc bạn học giỏi! ~

Bình luận (0)
NH
3 tháng 1 2018 lúc 12:27

\(1+3+3^2+............+3^{11}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)

\(=1.40+3^4.40+3^8.40\)

\(=40\left(1+3^4+3^8\right)⋮40\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HH
Xem chi tiết
CN
Xem chi tiết
3T
Xem chi tiết
TH
Xem chi tiết
VT
Xem chi tiết
TN
Xem chi tiết
TC
Xem chi tiết
HD
Xem chi tiết