Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương I - Căn bậc hai. Căn bậc ba

AT

3. Tính A= \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+....+\dfrac{1}{2013\sqrt{2012}+2012\sqrt{2013}}\)

HN
9 tháng 9 2017 lúc 8:33

Ta có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Thế vô bài toán ta được

\(A=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2012}}-\dfrac{1}{\sqrt{2013}}=1-\dfrac{1}{\sqrt{2013}}\)

Bình luận (0)
H24
9 tháng 9 2017 lúc 16:40

Ta có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n.\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Sau đó thế vô bài toán và làm tiếp như bác ctv là ta hoàn thành bài toán!

Bình luận (0)
AT
7 tháng 9 2017 lúc 20:57

@Akai Haruma,@Ace Legona

Bình luận (0)
AT
8 tháng 9 2017 lúc 22:06

@Akai Haruma giúp mk mk cần gấp

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
LN
Xem chi tiết
TL
Xem chi tiết
TN
Xem chi tiết
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
QE
Xem chi tiết