\(\frac{1}{2\left(x-1\right)}+\frac{3}{x^2-1}=\frac{1}{4}\)
\(\frac{x-1}{x}-\frac{3x}{2x-2}=-\frac{5}{2}\)
\(\frac{x+2}{2x-3}-\frac{1}{2x+3}=1-\frac{2x^2-x-4}{4x^2-9}\)
x3-6x+9x-2=0
-x4+2x3+4x2-7x+2=0
(x-2)(x2+3x+1)=x2-4
(x2+5x)2-2(x2+5x)-24=0
(4+x)2-(x-1)3=(1-x)(x2-2x+17)
(4x+3)2(x+1)(2x+1)=810
\(\frac{x^3+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
(2x^2.y^3.z^4)^k(-1/2.x.y^2)^2
Giải bpt \(3x^2-x+1>3\sqrt{x^4-x^2+2x-1}\)
\(\left\{x\varepsilon R|x^2+x+4-(2x^2+x+1)\sqrt{2x^3+7x^2+4x+16}=0\right\}\)
\(\sqrt{2x-3}=x-3\)
\(\sqrt{x^2+x-12}=8-x\)
\(\sqrt{x^2+2x+4}=\sqrt{2-x}\)
\(\sqrt{x^2-3x}=\sqrt{2x-1}\)
(x +1 phần 2).(2 phần 3-2x) =0
2x=z;3x=2y và (x+1)+2(y+2)+3(z+3)