Mk nghĩ đề như này : \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
Mk nghĩ đề như này : \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
1\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\x^3+y^3+x^3y^3+7\left(x+1\right)\left(y+1\right)=31\end{matrix}\right.\)
2 giải pt \(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Giải phương trình sau
a,\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
c, \(x^2+x+3=3\sqrt{x^3+1}\)
d, \(2x^2+5x-1=7\sqrt{x^3-1}\)
e, \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
f, \(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}=3\right)\)
g, \(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}-\sqrt{x^2+2x-3}\)
h, \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{3+x}{5}\)
Giúp nhanh nha e cảm ơn
giải pt \(\left(x+1\right)\left(2\sqrt{x^2+3}-x^2\right)+\sqrt[3]{3x^2+5}=5x+3\)
a)\(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
b)\(x^2+x+12\sqrt{x+1}=36\)
c)\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
d)\(\sqrt{x^2+12}-3x=\sqrt{x^2+5}-5\)
e)\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)
f)\(4x^3-25x^2+43x+x\sqrt{3x-2}=22+\sqrt{3x-2}\)
g)\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
h)\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
i)\(\sqrt{1-3x}-\sqrt[3]{3x-1}=\left|6x-2\right|\)
k)\(\sqrt{2x^3+3x^2-1}=2x^2+2x-x^3-1\)
l)\(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)