\(2\left(4cos^3x-3cosx\right)=m-2cosx+\sqrt[3]{m+6cosx}\)
\(\Leftrightarrow8cos^3x+2cosx=m+6cosx+\sqrt[3]{m+6cosx}\)
Đặt \(\left\{{}\begin{matrix}2cosx=a\\\sqrt[3]{m+6cosx}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a=b^3+b\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+1\right]=0\)
\(\Leftrightarrow a=b\Leftrightarrow2cosx=\sqrt[3]{m+6cosx}\)
\(\Leftrightarrow8cos^3x=m+6cosx\)
\(\Leftrightarrow2\left(4cos^3x-3cosx\right)=m\)
\(\Leftrightarrow2cos3x=m\)
Do \(-2\le2cos3x\le2\) nên pt có nghiệm khi và chỉ khi \(-2\le m\le2\)
Đúng 1
Bình luận (0)