Đề luyện thi tốt nghiệp phổ thông, cao đẳng, đại học

LH

20 cho hàm số f(x) =1/x-1. tìm một nguyên hàm F(x) của f(x) biết F(2)=1

21 Biết \(\int\) \(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}dx=a\left(x+2\right).\sqrt{x+2}+b\)(x+1).\(\sqrt{x+1}\) +C. Tính T=3a+b

22 trong ko gian với hệ tọa do oxyz , cho điểm A(1;0;2) .Tọa độ điểm \(A^'\)(A phẩy) là điểm đối xứng của điểm A qua đường thẳng d:x-1/2 = y+1/-1 = z+3/3là

NL
22 tháng 5 2020 lúc 23:20

20.

\(F\left(x\right)=\int\frac{1}{x-1}dx=ln\left|x-1\right|+C\)

\(F\left(2\right)=1\Leftrightarrow ln1+C=1\Rightarrow C=1\)

\(\Rightarrow F\left(x\right)=ln\left|x-1\right|+1\)

21.

\(\int\frac{1}{\sqrt{x+2}+\sqrt{x+1}}dx=\int\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}dx\)

\(=\int\left(\sqrt{x+2}-\sqrt{x+1}\right)dx=\int\left[\left(x+2\right)^{\frac{1}{2}}-\left(x+1\right)^{\frac{1}{2}}\right]dx\)

\(=\frac{2}{3}\left(x+2\right)\sqrt{x+2}-\frac{2}{3}\left(x+1\right)\sqrt{x+1}+C\)

\(\Rightarrow3a+b=3\left(\frac{2}{3}\right)-\frac{2}{3}=\frac{4}{3}\)

22.

Pt tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=-1-t\\z=-3+3t\end{matrix}\right.\)

Pt mặt phẳng (P) qua A và vuông góc d có dạng:

\(2\left(x-1\right)-y+3\left(z-2\right)=0\Leftrightarrow2x-y+3z-8=0\)

Gọi M là giao điểm d và (P) \(\Rightarrow\) tọa đô M thỏa mãn:

\(2\left(1+2t\right)+1+t+3\left(-3+3t\right)-8=0\Rightarrow t=1\)

\(\Rightarrow M\left(3;-2;0\right)\)

A đối xứng A' qua d \(\Leftrightarrow\) M là trung điểm AA' \(\Rightarrow A'\left(5;-4;-2\right)\)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết