Chương I - Căn bậc hai. Căn bậc ba

PN

2, Giải Phương trinh

\(x^{2} + (\dfrac{x}{x-1})^{2} =3 \)

3, Giải hệ phương trình\(\begin{cases} x^2 +xy+2=0\\ 4x^2+4xy+y^2-4x-2y+1=0 \end{cases}\)

4, Cho x,y thỏa mãn 4x+3y=15.Tìm GTNN của \(P = 4x^2 +9x^2\)\

PLZZZZZZZZZZ LM GIÚP EM

NL
10 tháng 10 2019 lúc 23:11

1/ ĐKXĐ:

\(\Leftrightarrow x^2+2x.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x-1}=3\)

\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^2-\frac{2x^2}{x-1}-3=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^2-\frac{2x^2}{x-1}-3=0\)

Đặt \(\frac{x^2}{x-1}=a\)

\(\Rightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x-1}=-1\\\frac{x^2}{x-1}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-3x+3=0\end{matrix}\right.\)

2/ Pt dưới tương đương:

\(\left(2x+y\right)^2-2\left(2x+1\right)+1=0\)

\(\Leftrightarrow\left(2x+y-1\right)^2=0\)

\(\Leftrightarrow2x+y-1=0\Rightarrow y=1-2x\)

Thay vào pt trên:

\(x^2+x\left(1-2x\right)+2=0\)

\(\Leftrightarrow-x^2+x+2=0\)

3/ Chắc là \(P=4x^2+9y^2\)

\(15^2=\left(2.2x+3y\right)^2\le\left(2^2+1^2\right)\left(4x^2+9y^2\right)\)

\(\Rightarrow4x^2+9y^2\ge\frac{15^2}{5}=45\)

\(P_{min}=45\) khi \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Bình luận (0)