Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

DN

2. CM:

a) \(-1\le\dfrac{2\sin x+\cos x}{\sin x-\cos x+3}\le\dfrac{5}{7}\)

b) \(\dfrac{2}{11}\le\dfrac{2\sin x+\cos x+2}{2\cos x-\sin x+4}\le2\)

NL
9 tháng 7 2021 lúc 22:32

a.

Đặt \(y=\dfrac{2sinx+cosx}{sinx-cosx+3}\)

\(\Leftrightarrow y.sinx-y.cosx+3y=2sinx+cosx\)

\(\Leftrightarrow\left(2-y\right)sinx+\left(y+1\right)cosx=3y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2-y\right)^2+\left(y+1\right)^2\ge9y^2\)

\(\Leftrightarrow7y^2+2y-5\le0\)

\(\Leftrightarrow-1\le y\le\dfrac{5}{7}\) (đpcm)

Bình luận (0)
NL
9 tháng 7 2021 lúc 22:37

b.

Hoàn toàn tương tự câu a:

Đặt \(y=\dfrac{2sinx+cosx+2}{2cosx-sinx+4}\)

\(\Leftrightarrow2y.cosx-y.sinx+4y=2sinx+cosx+2\)

\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-2\)

Theo đk có nghiệm pt lượng giác bậc nhất:

\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-2\right)^2\)

\(\Leftrightarrow11y^2-16y-1\le0\)

\(\Leftrightarrow\dfrac{8-5\sqrt{3}}{11}\le y\le\dfrac{8+5\sqrt{3}}{11}\)

Đề bài chắc sai, em kiểm tra lại số liệu đề câu b nhé

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
TV
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết