a: \(\dfrac{-315}{540}=\dfrac{-315:45}{540:45}=\dfrac{-7}{12}\)
b: \(\dfrac{25\cdot13}{26\cdot35}=\dfrac{25}{35}\cdot\dfrac{1}{2}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)
a: \(\dfrac{-315}{540}=\dfrac{-315:45}{540:45}=\dfrac{-7}{12}\)
b: \(\dfrac{25\cdot13}{26\cdot35}=\dfrac{25}{35}\cdot\dfrac{1}{2}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)
Rút gọn phân số:
a/ 25.13/26.35
b/ 6.9 - 2.17/63.3 - 119
c/ 3.13 - 13.18/15.40 - 80
d/ 2929 - 101/2.1919 + 404
f/ -1997.1996+1/(-1995).(-1997)+1996
g/ 2.3+4.6+14.21/ 3.5+6.10+21.35
h/ 3.7.13.37.39 - 10101/ 505050 - 70707
/ dấu phân số
rút gọn p/s
a, \(\dfrac{2929-101}{2.1919+404}\)
b, \(\dfrac{\left(-5\right)^3.40.4^3}{135.\left(-2\right)^{14}.\left(-100\right)^0}\)
rút gọn p/s:
a, \(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}\)
b, \(\dfrac{-1997.1996+1}{\left(-1995\right).\left(-1997\right)+1996}\)
Help me
bài 1 : tính
a)\(\frac{-5}{13}-\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)\) b) \(\left(\frac{3}{9}-\frac{9}{18}\right)+\frac{3}{6}-\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{5}{15}\) c) \(\frac{9}{18}+\frac{16}{32}-\frac{12}{46}-\frac{9}{17}\) d) \(\left(\frac{14}{18}+\frac{-16}{27}\right)-\left(\frac{2}{3}-\frac{5}{15}\right)\)
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{\left(3n-1\right)\times\left(3n+2\right)}=\frac{1}{6n+4}\)
b.\(\frac{5}{3\times7}+\frac{5}{7\times11}+\frac{5}{11\times15}+...+\frac{5}{\left(4n-1\right)\times\left(4n+3\right)}=\frac{5n}{4n+3}\)
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{\left(3n-1\right)\cdot\left(3n+2\right)}=\frac{n}{6n+4}\)
b.\(\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{\left(4n-1\right)\cdot\left(4n+3\right)}=\frac{5n}{4n+3}\)
a,A=\(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
b,B=\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{998\times999\times100}\)
c,C=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1\times98+2\times97+3\times96+...+98\times1}\)
Tính nhanh giá trị biểu thức sau:
a) \(-\frac{9}{10}\cdot\frac{5}{14}+\frac{1}{10}\cdot\left(-\frac{9}{2}\right)+\frac{1}{7}\cdot\left(-\frac{9}{10}\right)\)
b)\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right)\cdot132\)
c)\(-\frac{2}{3}\cdot\left(\frac{8}{9}\cdot\frac{8}{13}-\frac{8}{27}\cdot\frac{3}{13}+\frac{4}{3}\cdot\frac{22}{39}\right)\)
\(\frac{\left(2.4.6.....2016\right).\left(2.4.6.....2016\right)}{\left(1.3.5.....2015\right).\left(3.5.7.....2017\right)}\) rút gọn bằng gì vậy?