Violympic toán 8

H24

1,Giải PT

a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

b,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)

c,\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

LN
9 tháng 5 2020 lúc 21:13

a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

ĐKXĐ: x≠1/4, x≠-1/4

\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)

⇒-12x-3=8x-2-3-6x

⇔8x-6x+12x=-3+2+3

⇔14x=2

⇔x=1/7(tmđk)

Vậy phương trình có nghiệm là x=1/7

b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)

ĐKXĐ: x≠0, x≠2

(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)

⇒10-2x+7x-14=4x-4+x

⇔-2x+7x-4x-x=-4-10+14

⇔0x=0

⇔ x∈R

Vậy phương trình có nghiệm là x∈R và x≠0, x≠2

c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)

ĐKXĐ: x≠0

(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3

⇔x4+x-x4+x=3

⇔2x=3

⇔x=3/2(tmđk)

Vậy phương trình có nghiệm là x=3/2

Bình luận (0)

Các câu hỏi tương tự
CV
Xem chi tiết
CG
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
VH
Xem chi tiết
NA
Xem chi tiết
DH
Xem chi tiết
NS
Xem chi tiết