Violympic toán 9

PN

1, \(x^2+2x-1=2\sqrt{3x^3-5x^2+5x-2}\)

2, \(\left\{{}\begin{matrix}x\left(2\sqrt{y-1}-x\right)+y\left(2\sqrt{x-1}-y\right)=0\\x^3+y^3=16\end{matrix}\right.\)

LQ
6 tháng 3 2019 lúc 16:44

1.

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(x^2+2x-1=2\sqrt{3x^3-5x^2+5x-2}\\ \Leftrightarrow x^2-x+1+3x-2=2\sqrt{\left(3x-2\right)\left(x^2-x+1\right)}\)

Đặt \(\sqrt{x^2-x+1}=a;\sqrt{3x-2}=b\), ta được:

\(a^2+b^2=2ab\\ \Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow\left(a-b\right)^2=0\\ \Leftrightarrow\left(\sqrt{x^2-x+1}-\sqrt{3x-2}\right)^2=0\\ \Leftrightarrow\sqrt{x^2-x+1}=\sqrt{3x-2}\\ \Leftrightarrow x^2-x+1=3x-2\\ \Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\left(t/m\right)\)

Vậy PT có nghiệm \(S=\left\{1;3\right\}\)

b, ĐKXĐ: \(x\ge1;y\ge1\)

Từ PT trên (gọi là 1), ta có:

\(\left(1\right)\Leftrightarrow2x\sqrt{y-1}+2y\sqrt{x-1}-x^2-y^2=0\\ \Leftrightarrow2\sqrt{x}\cdot\sqrt{xy-x}+2\sqrt{y}\cdot\sqrt{xy-y}-x^2-y^2=0\left(1a\right)\)

Áp dụng BĐT AM-GM, ta được:

\(\left\{{}\begin{matrix}2\sqrt{x}\cdot\sqrt{xy-x}\le x+xy-x=xy\\2\sqrt{y}\cdot\sqrt{xy-y}\le y+xy-y=xy\end{matrix}\right.\)

Suy ra:

\(VT\left(1a\right)\le-x^2+2xy-y^2=-\left(x-y\right)^2\\ \Rightarrow\left(x-y\right)^2\le0\)

ĐT xảy ra\(\Leftrightarrow x=y\)

Thay vào PT dưới (gọi là 2), ta được:

\(\left(2\right)\Leftrightarrow x^3=y^3=8\\ \Leftrightarrow x=y=2\left(t/m\right)\)

Vậy HPT có nghiệm \(x=y=2\).

Chúc bạn học tốt nhaok.

Bình luận (0)
LD
6 tháng 3 2019 lúc 13:04

\(x^2+2x-1\) hay \(x^2+2x+1\) ?

Bình luận (1)

Các câu hỏi tương tự
BL
Xem chi tiết
NT
Xem chi tiết
KN
Xem chi tiết
HC
Xem chi tiết
ML
Xem chi tiết
LS
Xem chi tiết
TT
Xem chi tiết
TM
Xem chi tiết
BL
Xem chi tiết