Violympic toán 8

SH

1. Tím số dư trong phép chia f(x)=x100+x99+x98+...+x2+x+1 cho x2-1

2. Cho đa thức 4x3 +ax+b chia hết cho các đa thức x-2 và x+1 . Tính 2a-3b

NT
2 tháng 9 2017 lúc 9:38

1. Đa thức chia có bậc là 2 nên bậc của đa thức dư không vượt quá 1

Gỉa sử \(f_{\left(x\right)}\) chia \(x^2-1\) được thương là \(g_{\left(x\right)}\) và số dư là ax+b \(\Rightarrow f_{\left(x\right)}=x^{100}+x^{99}+x^{98}+...+x^2+1=\left(x^2-1\right).g_{\left(x\right)}+\left(ax+b\right)\)

Ta có: \(f_{\left(1\right)}=1^{100}+1^{99}+...+1^2+1=\left(1^2-1\right).g_{\left(1\right)}+\left(a.1+b\right)\)

\(\Rightarrow a+b=101\) (1)

\(f_{\left(-1\right)}=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)+1=\left[\left(-1\right)^2-1\right].g_{\left(-1\right)}+\left[a\left(-1\right)+b\right]\)

\(\Rightarrow-a+b=1\) (2)

Từ (1) và (2) \(\Rightarrow a+b-a+b=102\Rightarrow2b=102\Rightarrow b=51\)

\(\Rightarrow-a+51=1\Rightarrow-a=-50\Rightarrow a=50\)

Vậy đa thức dư là 50x+51

2. Đa thức \(4x^3+ax+b\) chia hết cho các đa thức x-2 và x+1, mà x-2 và x+1 không có nhân tử chung có bậc khác 0 nên \(4x^3+ax+b⋮\left(x-2\right)\left(x+1\right)=x^2-x-2\)

Đặt \(4x^3+ax+b=\left(x^2-x-2\right)\left(4x+c\right)\)

\(=4x^3+cx^2-4x^2-cx-8x-2c\)

\(=4x^3+\left(c-4\right)x^2-\left(c+8\right)x-2c\)

\(\Rightarrow\left\{{}\begin{matrix}c-4=0\\c+8=-a\\-2c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=4\\a=-12\\b=-8\end{matrix}\right.\Rightarrow2a-3b=2.\left(-12\right)-3.\left(-8\right)=0\)

Vậy 2a-3b=0

Bình luận (0)

Các câu hỏi tương tự
T8
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
RG
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết