Violympic toán 8

NH

1. Tìm các cặp số nguyên \(\left(x;y\right)\) thoả mãn: \(x^3+3x=x^2y+2y+5\)

2. Một đa thức P(x) chia cho \(x^2+x+1\) thì dư \(1-x\) và chia cho \(x^2-x+1\) thì dư \(3x+5\). Tìm số dư của phép chia P(x) cho \(x^4+x^2+1\)

PA
25 tháng 4 2018 lúc 18:43

1. \(x^3+3x=x^2y+2y+5\)

\(\Leftrightarrow x^3+3x-x^2y-2y-5=0\)

\(\Leftrightarrow(x^3+2x)-(x^2y+2y)+x-5=0\)

\(\Leftrightarrow x(x^2+2)-y(x^2+2)=5-x\)

\(\Leftrightarrow(x^2+2)\left(x-y\right)=5-x\)

\(\Leftrightarrow\left(x-y\right)=\dfrac{5-x}{2^2+2}\)

Vì x,y nguyên nên x-y nguyên

\(\Rightarrow5-x⋮x^2+2\)

\(\Rightarrow x-5⋮x^2+2\)

\(\Rightarrow(x-5)\left(x+5\right)⋮x^2+2\)

\(\Rightarrow x^2-25⋮x^2+2\)

\(\Rightarrow x^2+2-27⋮x^2+2\)

\(\Rightarrow27⋮x^2+2\)

=> \(x^2+2\) thuộc tập hợp ước dương của 27 ( vì \(x^2+2>0\))

\(\Rightarrow x^2+2\in\left\{1;3;9;27\right\}\)

\(\Rightarrow x^2\in\left\{-1;1;7;25\right\}\)

\(x^{ }\) là số nguyên

=> \(x^2\in\left\{1;25\right\}\)

=> \(x\in\left\{-5;-1;1;5\right\}\)

Ta có bảng:

x -5 -1 1 5
y \(\dfrac{145}{27}\) -3 \(\dfrac{-1}{3}\) 5
Nhận xét Loại Chọn Loại Chọn

Vậy ...

Bình luận (0)
PA
25 tháng 4 2018 lúc 18:47

Còn phần 2 bạn xem câu hỏi Le chi , mình đã trả lời giúp bạn ấy rồi

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
LC
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
DF
Xem chi tiết
LC
Xem chi tiết
BB
Xem chi tiết
MS
Xem chi tiết