§3. Các phép toán tập hợp

C2

1. Tìm a thuộc Z để a-3 chia hết cho a2+2

2. Tìm x,y nguyên tố để x2_2y=1

3. Cho p, p+d, p+2d là các số nguyên tố . Chứng minh rằng d chia hết cho 6

4. Cho 2^n+1 là hợp số. Chứng minh rằng 2^n-1 là hợp số

NL
15 tháng 11 2018 lúc 13:54

1. Giả sử \(a-3⋮a^2+2\Rightarrow\dfrac{a-3}{a^2+2}=A\) \(\left(A\in Z;A\ne0\right)\)

\(\Rightarrow a-3=A.a^2+2A\Rightarrow A.a^2-a+2A+3=0\)

\(\Delta=1-4A\left(2A+3\right)\ge0\Rightarrow-8A^2-12A+1\ge0\)

\(\Rightarrow\dfrac{-3-\sqrt{11}}{4}\le A\le\dfrac{-3+\sqrt{11}}{4}\)

Mà A nguyên \(\Rightarrow A=0\) hoặc \(A=-1\)

\(A=0\Rightarrow a-3=0\Rightarrow a=3\)

\(A=-1\Rightarrow-a^2-a+1=0\) \(\Rightarrow\) pt ko có nghiệm nguyên

Vậy a=0 thì a-3 chia hết \(a^2+2\)

2. \(x^2-2y=1\Rightarrow2y=x^2-1=\left(x-1\right)\left(x+1\right)\)

Nếu x chẵn \(\Rightarrow x=2\Rightarrow\) y không phải số tự nhiên (loại)

Nếu x lẻ \(\Rightarrow x-1\)\(x+1\) đều là số chẵn \(\Rightarrow\left(x-1\right)\left(x+1\right)⋮4\)

Đặt \(\left(x-1\right)\left(x+1\right)=4k\) với \(k\in N;k\ge1\)

\(\Rightarrow2y=4k\Rightarrow y=2k\)

Nếu \(k=1\Rightarrow y=2\Rightarrow x^2=2y+1=5\) \(\Rightarrow\) x không phải số tự nhiên (loại)

Nếu \(k>1\) \(\Rightarrow\) y là số chẵn lớn hơn 2 \(\Rightarrow\) y không phải là số nguyên tố

\(\Rightarrow\)Không tồn tại cặp số nguyên tố (x;y) nào để \(x^2-2y=1\)

3. Nếu d=0 =>d chia hết cho 6. Xét d>0, d là STN

Ta luôn có \(p>2\) do nếu \(p=2\Rightarrow p+2d=2\left(d+1\right)\) là hợp số, vô lý

\(\Rightarrow\) p là số lẻ \(\Rightarrow d\) là số chẵn (vì nếu d lẻ thì p+d chẵn là hợp số) \(\Rightarrow d⋮2\)

TH1: \(p=3a+1\)

Nếu \(d=3b+1\Rightarrow p+2d=3a+1+6b+2=3\left(a+2b+1\right)⋮3\)

\(\Rightarrow\) vô lý (do giả thiết p+2d là số nguyên tố)

Nếu \(d=3b+2\Rightarrow p+d=3a+1+3b+2=3\left(a+b+1\right)⋮3\) vô lý

Vậy \(d=3b\Rightarrow d⋮3\Rightarrow d⋮6\)

TH2: \(p=3a+2\)

Nếu \(d=3b+1\Rightarrow p+d=3a+2+3b+1=3\left(a+b+1\right)⋮3\) (loại)

Nếu \(d=3b+2\Rightarrow p+2d=3a+2+6b+4=3\left(a+2b+2\right)⋮3\) (loại)

Vậy \(d=3b⋮3\Rightarrow d⋮6\)

Kết luận: nếu p, p+d, p+2d là số nguyên tố thì d chia hết cho 6

4. Đề sai. Ta lấy ví dụ n=3 \(\Rightarrow2^3+1=9\) là hợp số, nhưng \(2^3-1=7\) là số nguyên tố

Hoặc \(n=5...\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
VA
Xem chi tiết
TA
Xem chi tiết
ND
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
LN
Xem chi tiết
NG
Xem chi tiết
TA
Xem chi tiết