Đề luyện thi tốt nghiệp phổ thông, cao đẳng, đại học

LH

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

NL
2 tháng 7 2020 lúc 17:09

1.

\(\Leftrightarrow2.4^x-5.2^x+2\le0\)

Đặt \(2^x=t>0\Rightarrow2.t^2-5t+2\le0\)

\(\Rightarrow\frac{1}{2}\le t\le2\Rightarrow\frac{1}{2}\le2^x\le2\)

\(\Rightarrow-1\le x\le1\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(5-x\right)>0\\x\left(5-x\right)< 6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0< x< 5\\\left[{}\begin{matrix}x< 2\\x>3\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}0< x< 2\\3< x< 5\end{matrix}\right.\)

3.

\(\Leftrightarrow1\ge\left(\sqrt{6}+\sqrt{5}\right)^{x-1}.\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

\(\Leftrightarrow\left(\sqrt{6}+\sqrt{5}\right)^{3x-6}\le1\)

\(\Leftrightarrow3x-6\le0\Rightarrow x\le2\)

Bình luận (0)
NL
2 tháng 7 2020 lúc 17:17

4.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\1>3^{-x}.3^{\sqrt{x+2}}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\3^{\sqrt{x+2}-x}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\sqrt{x+2}-x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\sqrt{x+2}\le x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+2< x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x-2>0\end{matrix}\right.\) \(\Rightarrow x>2\)

5.

\(\Leftrightarrow\left(\frac{4}{3}\right)^{2x-1}.\left(\frac{4}{3}\right)^{-2x^2+x}\ge1\)

\(\Leftrightarrow\left(\frac{4}{3}\right)^{-2x^2+3x-1}\ge1\)

\(\Leftrightarrow-2x^2+3x-1\ge0\)

\(\Rightarrow\frac{1}{2}\le x\le1\)

Bình luận (0)
NL
2 tháng 7 2020 lúc 17:21

6.

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\\frac{1}{2}log_2\left(x+7\right)>log_2\left(x+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\\sqrt{x+7}>x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x+7>x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x^2+x-6< 0\end{matrix}\right.\) \(\Rightarrow-1< x< 2\)

7.

\(\left(\frac{1}{5}\right)^{x^2-2x}\ge\left(\frac{1}{5}\right)^3\)

\(\Leftrightarrow x^2-2x\le3\)

\(\Leftrightarrow x^2-2x-3\le0\Rightarrow-1\le x\le3\)

\(\Rightarrow x=\left\{1;2;3\right\}\Rightarrow\) có 3 nghiệm nguyên dương

Bình luận (0)
NL
2 tháng 7 2020 lúc 17:29

8.

\(f'\left(x\right)=e^{-3x}-3xe^{-3x}\)

\(f'\left(x\right)>0\Leftrightarrow e^{-3x}-3xe^{-3x}>0\)

\(\Leftrightarrow e^{-3x}\left(1-3x\right)>0\)

\(\Leftrightarrow1-3x>0\Rightarrow x< \frac{1}{3}\)

9.

Đặt \(3^x=t>0\Rightarrow3t^2-10t+3\le0\)

\(\Leftrightarrow\frac{1}{3}\le t\le3\)

\(\Rightarrow\frac{1}{3}\le3^x\le3\)

\(\Rightarrow-1\le x\le1\) \(\Rightarrow T=2\)

10.

\(\Leftrightarrow0< \frac{1-2x}{x}< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1-2x}{x}>0\\\frac{1-2x}{x}-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1-2x}{x}>0\\\frac{1-3x}{x}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0< x< \frac{1}{2}\\\left[{}\begin{matrix}x< 0\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\frac{1}{3}< x< \frac{1}{2}\)

Bình luận (0)
NL
2 tháng 7 2020 lúc 17:34

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

Bình luận (0)
NL
2 tháng 7 2020 lúc 17:39

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
LH
Xem chi tiết
KH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
KR
Xem chi tiết
TT
Xem chi tiết
BV
Xem chi tiết