Chương I - Căn bậc hai. Căn bậc ba

OL

1, Rút gọn

A=\( \sqrt{8+2\sqrt15}\)+\(\sqrt{8-2\sqrt15} \)-2\(\sqrt{6-2\sqrt5}\)

B=\(\sqrt{6+2\sqrt5-\sqrt13+\sqrt48}\)

2, Chứng minh

(\(\dfrac{3\sqrt2}{\sqrt27-3}\)-\(\dfrac{\sqrt150}{3}\))*\(\dfrac{1}{\sqrt6}\)=\(\frac{-4}{3}\)

Giúp mik vs. Mai mik phải nộp rồi

NT
5 tháng 8 2020 lúc 20:52

Bài 1:

Ta có: \(A=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}-2\cdot\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-2\cdot\left|\sqrt{5}-1\right|\)

\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}-2\sqrt{5}+2\)

=2

Vậy: A=2

Bài 2: Sửa đề: Chứng minh \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}=\frac{-7+\sqrt{3}}{6}\)

Ta có: \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{9\sqrt{2}}{3\left(\sqrt{27}-3\right)}-\frac{\sqrt{150}\left(\sqrt{27}-3\right)}{3\cdot\left(\sqrt{27}-3\right)}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{9\sqrt{2}-45\sqrt{2}+3\sqrt{150}}{9\left(\sqrt{3}-1\right)}\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{-36\sqrt{2}+3\sqrt{150}}{9\sqrt{6}\cdot\left(\sqrt{3}-1\right)}\)

\(=\frac{\sqrt{54}\cdot\left(5-4\sqrt{3}\right)}{\sqrt{486}\cdot\left(\sqrt{3}-1\right)}\)

\(=\frac{5-4\sqrt{3}}{3\sqrt{3}-3}\)

\(=\frac{-7+\sqrt{3}}{6}\)(đpcm)

Bình luận (0)
NH
5 tháng 8 2020 lúc 20:52

1/ \(A=\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\) (Vì \(\sqrt{5}-\sqrt{3}>0\))

\(B=\sqrt{6+2\sqrt{5}}-\sqrt{13}+\sqrt{48}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{13}+4\sqrt{3}=\left|\sqrt{5}+1\right|-\sqrt{13}+4\sqrt{3}=\sqrt{5}+1+\sqrt{13}+4\sqrt{5}\)

2/Ta có :

\(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}\)

\(=\left(\frac{3\sqrt{2}}{3\sqrt{3}-3}-\frac{5\sqrt{6}}{3}\right).\frac{1}{\sqrt{6}}\)

\(=\left(\frac{3\sqrt{2}}{3\left(\sqrt{3}-1\right)}-\frac{5\sqrt{6}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}-1\right)}\right).\frac{1}{\sqrt{6}}\)

\(=\frac{3\sqrt{2}-15\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)

\(=\frac{-12\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)

\(=\frac{-7+\sqrt{3}}{6}\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết