Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

TP

1/ Giải hệ phương trình \(\left\{{}\begin{matrix}x^2+y^2=1\\4xy\left(2y^2-1\right)=1\end{matrix}\right.\)

Câu này em thử giải bằng cách thế x y bằng sin cos để giải, nhưng khi giải ra x rồi thì làm sao giải y vậy ạ? Tại nó dính k và π.

2/ Tìm số nghiệm thuộc đoạn [0; π] của phương trình sin x = \(\frac{1}{3}\)

Câu này em giải ra được x rồi nhưng lại dính arcsin, thế thì làm sao thế để xét vào trong đoạn trên ạ?

NL
4 tháng 8 2020 lúc 5:21

1/

Bạn chỉ cần tìm sin, cos trong \(\left[0;2\pi\right]\) là đủ (vì cả 2 hàm đều tuần hoàn với chu kì \(2\pi\))

Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\) với \(a\in\left[0;2\pi\right]\)

\(\Rightarrow4sina.cosa\left(2cos^2a-1\right)=1\)

\(\Leftrightarrow2sin2a.cos2a=1\Leftrightarrow sin4a=1\)

\(\Rightarrow4a=\frac{\pi}{2}+k2\pi\Rightarrow a=\frac{\pi}{8}+\frac{k\pi}{2}\)

\(\Rightarrow0\le\frac{\pi}{8}+\frac{k\pi}{2}\le2\pi\Rightarrow a=\left\{\frac{\pi}{8};\frac{5\pi}{8};\frac{9\pi}{8};\frac{13\pi}{8};\frac{17\pi}{8}\right\}\)

\(\Rightarrow\left(x;y\right)=\left(sin\frac{\pi}{8};cos\frac{\pi}{8}\right);\left(sin\frac{5\pi}{8};cos\frac{5\pi}{8}\right)...\)

2.

\(sinx=\frac{1}{3}\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+l2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)\\x=\pi-arcsin\left(\frac{1}{3}\right)\end{matrix}\right.\)

(Vì \(0< \frac{1}{3}< 1\) nên \(0< arcsin\left(\frac{1}{3}\right)< \frac{\pi}{2}\) do đó nếu \(k>0\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi>2\pi\) ; nếu \(k\le-1\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi\le-\frac{3\pi}{2}\) đều ko thuộc \(\left[0;\pi\right]\Rightarrow k=0\).

Tương tự với \(l\))

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
LS
Xem chi tiết
MT
Xem chi tiết
BB
Xem chi tiết
QA
Xem chi tiết
LH
Xem chi tiết
NP
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết