Bài 2: Liên hệ giữa thứ tự và phép nhân

TH

1. Chứng minh rằng:

a. \(\dfrac{a^2+b^2}{2}\)≥(\(\dfrac{a+b}{2}\))2

b. \(\dfrac{a^2+b^2+c^2}{3}\)≥(\(\dfrac{a+b+c}{3}\))2

2. Chứng minh rằng:

a. a2+\(\dfrac{b^2}{4}\)≥ab

b. (a+b)2≤ 2(a2+b2)

c. a2+b2+1 ≥ ab+a+b

3. Chứng minh rằng: a2+ 5b2-(3a+b) ≥ 3ab-5

PD
22 tháng 3 2018 lúc 17:45

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Bình luận (0)
PD
22 tháng 3 2018 lúc 17:48

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

Bình luận (0)
PL
22 tháng 3 2018 lúc 18:02

2. a) a2 + \(\dfrac{b^2}{4}\)≥ab

<=> a2 - ab + \(\dfrac{b^2}{4}\)≥ 0

<=> a2 -2.\(\dfrac{b}{2}a+\left(\dfrac{b}{2}\right)^2\) ≥ 0

<=> \(\left(a-\dfrac{b}{2}\right)^2\)≥ 0 ( luôn đúng )

=> đpcm

b) ( a + b)2 ≤ 2( a2 + b2)

<=> a2 + 2ab + b2 - 2a2 - 2b2 ≤ 0

<=> - ( a2 - 2ab + b2 ) ≤ 0

<=> - ( a - b)2 ≤ 0 ( luôn đúng )

=> đpcm

c) a2 + b2 + 1 ≥ ab + a + b

<=> 2( a2 + b2 + 1 ) ≥ 2( ab + a + b)

<=> a2 - 2ab + b2 + a2 - 2a + 1 + b2 - 2b + 1 ≥ 0

<=> ( a - b)2 + ( a - 1)2 + ( b - 1)2 ≥ 0 ( luôn đúng )

=> đpcm

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
DQ
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
SK
Xem chi tiết
HM
Xem chi tiết
TH
Xem chi tiết
HM
Xem chi tiết
TH
Xem chi tiết