Bài 3: Bất phương trình một ẩn

NV

1) Chứng minh: 2 (a2 + b2) \(\ge\) (a + b)2.

2) Cho x > 0, y > 0. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

3) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh:

a2 + b2 + c2 < 2 (ab + bc + ca).

PL
30 tháng 3 2018 lúc 19:01

1) 2( a2 + b2 ) ≥ ( a + b)2

<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( luôn đúng )

=> đpcm

2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :

a + b ≥ \(2\sqrt{ab}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4

=> \(\dfrac{1}{x}+\dfrac{1}{y}\)\(\dfrac{4}{x+y}\)

Bình luận (0)