Violympic toán 9

NH

1. Cho x,y là các số thực dương thỏa mãn \(x+y=2.Cm\) \(x^2y^2\left(x^2+y^2\right)\le2\)

2. Cho x,y là các số dương thỏa mãn \(x+y=2.Cm\) \(x^3y^3\left(x^3+y^3\right)\le2\)

LD
15 tháng 1 2019 lúc 19:10

1.

Ta có:

\(xy\left(x^2+y^2\right)=\dfrac{1}{2}\cdot2xy\left(x^2+y^2\right)\le\dfrac{1}{2}\cdot\dfrac{\left(x^2+2xy+y^2\right)^2}{4}=\dfrac{1}{2}\cdot\dfrac{\left(x+y\right)^4}{4}=\dfrac{1}{2}\cdot\dfrac{2^4}{4}=2\)

\(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)

\(\Rightarrow VT\le2\cdot1=2\)

Dấu "=" xảy ra khi x = y = 1

Bình luận (3)

Các câu hỏi tương tự
BB
Xem chi tiết
PP
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết
DH
Xem chi tiết
MD
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết