Violympic toán 9

AJ

1. Cho x,y là các số khác 0 và thỏa mãn x+y=1. Tìm GTLN của biểu thức :

P=\(\frac{1}{x^3+y^3+xy}\)

2. Tính P=x2 +y2 và Q=x2013+y2014

Biết rằng: x>0, y>0 và 1+x+y=\(\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

TP
26 tháng 7 2019 lúc 11:08

2.

\(x+y+1=\sqrt{x}+\sqrt{y}+\sqrt{xy}\)

\(\Leftrightarrow2x+2y+2=2\sqrt{x}+2\sqrt{y}+2\sqrt{xy}\)

\(\Leftrightarrow x-2\sqrt{xy}+y+x-2\sqrt{x}+1+y-2\sqrt{y}+1=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=\sqrt{y}\\\sqrt{x}=1\\\sqrt{y}=1\end{matrix}\right.\Leftrightarrow x=y=1\)

Từ đó suy ra : \(\left\{{}\begin{matrix}P=1^2+1^2=2\\Q=1^{1023}+1^{2014}=2\end{matrix}\right.\)

Bình luận (0)
TP
26 tháng 7 2019 lúc 11:05

1.

Xét \(x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)

\(\Rightarrow x^2+y^2\ge\frac{1}{2}\)

Từ đó ta có : \(P=\frac{1}{x^2+y^2}\le\frac{1}{\frac{1}{2}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TM
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết