Violympic toán 8

H24

1/ Cho tứ giác ABCD có \(AC\perp BD\equiv O\). Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng:

a. OE + OF + OG + OH bằng nửa chu vi tứ giác ABCD

b. Tứ giác EFGH là hình chữ nhật

NT
30 tháng 3 2019 lúc 10:18

Các dạng toán về hình chữ nhật - Toán lớp 8-2

a. Ta có

\displaystyle OE+\text{OF+OG+OH=}\frac{\text{1}}{\text{2}}(AB+BC+CD+DA)=\frac{1}{2}{{P}_{ABCD}}

b. Có \displaystyle \left\{ \begin{array}{l}\text{EF//GH}\\\text{EF=G}\end{array} \right.\Rightarrow \diamond \text{EFGH} là hình bình hành ( dấu hiệu nhận biết )
Mặt khác \displaystyle \left\{ \begin{array}{l}AC\bot BD\\AC//\text{EF}\end{array} \right.\Rightarrow \left\{ \begin{array}{l}\text{EF}\bot \text{BD}\\\text{BD//EH}\end{array} \right.\Rightarrow EH\bot \text{EF}\Rightarrow \diamond \text{EFGH} là hình chữ nhật

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
DA
Xem chi tiết
DA
Xem chi tiết
LT
Xem chi tiết
LS
Xem chi tiết
BB
Xem chi tiết
TQ
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết