Chương 1: VECTƠ

NN

1. cho tam giác ABC vuông tại A , AB=AC=2. độ dài vectơ 4AB - AC bằng?

2. cho tam giác ABC có M thuộc cạnh AB sao cho AM=3MB. đẳng thức nào sau đây đúng?

A. vt CM = 1/4 vt CA + 3/4 vt CB

B. CM = 7/4 CA + 3/4 CB

C. CM= 1/2 CA+ 3/4 CB

D. CM= 1/4 CA - 3/4 CB

NA
10 tháng 6 2018 lúc 8:31

1,Ta có luôn tồn tại một điểm K sao cho \(4\overrightarrow{AB}-\overrightarrow{AC}=3\overrightarrow{AK}\).(*) Thật vậy:

VT(*) = \(4\left(\overrightarrow{AK}+\overrightarrow{KB}\right)-\left(\overrightarrow{AK}+\overrightarrow{KC}\right)=3\overrightarrow{AK}+4\overrightarrow{KB}-\overrightarrow{KC}\) (**)

Từ (*) và (**) ta có : \(4\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{0}\)\(4\overrightarrow{KB}=\overrightarrow{KC}\) ⇒ B nằm giữa K và C sao cho 4KB = KC= \(\dfrac{4}{3}\) .BC.

Khi đó ta có : \(\left|4\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{3AK}\right|=3AK\)

Ap dụng định lí Py-ta-go cho tam giác ABC vuông tại A ta được:

BC2= AB2 + AC2 ⇒BC = \(\sqrt{2^2+2^2}=2\sqrt{2}\)⇒ KC = \(\dfrac{4}{3}\).BC = \(\dfrac{4}{3}\). \(2\sqrt{2}\)

⇒KC = \(\dfrac{8\sqrt{2}}{3}\)

Ta có : tam giác ABC vuông cân tại A nên \(\widehat{ACB}=\widehat{ACK}=45^O\)

Ap dụng định lí cosin ta có : Trong tam giác ACK có

AK = \(\sqrt{AC^2+KC^2-2AK.KC.\cos\widehat{ACK}}=\sqrt{2^2+\left(\dfrac{8\sqrt{2}}{3}\right)^2-2.2.\dfrac{8\sqrt{2}}{3}.\cos45^O}=\dfrac{2\sqrt{17}}{3}\)

⇒3AK=2\(\sqrt{17}\)\(\left|4\overrightarrow{AB}-\overrightarrow{AC}\right|\)=2\(\sqrt{17}\)

VẬY.....................

Bình luận (0)
MN
21 tháng 8 2019 lúc 8:35

Câu 2: AM=3MB => vt AC + vt CM = 3vtMC + 3vtCB

<=>vtCM - 3vtMC = 3vtCB -vtAC

<=>vtCM = 1/4 vtCA + 3/4 vtCB

(Mk mới học Toán 10 nên có sai thì thông cảm nha!!!)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
HT
Xem chi tiết
LD
Xem chi tiết
LC
Xem chi tiết
TK
Xem chi tiết
TH
Xem chi tiết
HT
Xem chi tiết
LA
Xem chi tiết