giả thiết không có điểm S, sao làm câu b được.
giả thiết không có điểm S, sao làm câu b được.
Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng
Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng
Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng
Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)
Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng
Chứng minh vectoAB + vectoCD=vectoAD - vectoBC
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
Cho Δ ABC . Trên tia BC lấy điểm D sao cho 3BD = 2BC (3 lần vecto BD = 2 lần vecto BC ) . Gọi E là điểm thỏa mãn : 3EA+EB+2EC = 0 (vecto)
a. Biểu thị vecto AD , AE theo 2 vecto AB , AC
b. Chứng minh A , E , D thẳng hàng và E là trung điểm AD
c. Trên AC lấy F và đặt FA = kAC (k ϵ R , vecto) . Tìm k để B , E , F thẳng hàng
Cho tam giác vuông ABC (∠A = 900) có cạnh BC = 2AB, tia phân giác của ∠ABC cắt AC tại D, gọi E là trung điểm của cạnh BC.
1) Chứng minh DE vuông góc với BC.
2) Chứng minh rằng BD = DC.
3) Tính ∠B, ∠C của tam giác ABC.
cho tam giác ABC m là trung điểm của AB ,N là trung điểm trên AC sao cho vectoCN=2vectoNA,K là trung điểm của MN.CMR:vecto AK =1/4vectoAB+vectoAC
Cho tam giác ABC có điểm M là trung điểm của BC. Lấy điểm I sao cho IM =2AI Điểm K thuộc cạnh AC sao cho B.I. K thẳng hàng. Khi đó n KA =m CK .tính S = 2023 - m + n
Cho tam giác ABC. Gọi M, N, I lần lượt là các điểm thảo mãn 2AM+2BM=2IA+3IB-IC=0
1) Phân tích vecto AM, AI theo AB, AC
2) Chứng minh: 3 điểm C, N, I thẳng hàng