Đại số lớp 7

HT

1, Cho \(\dfrac{a+c}{b+d}\) = \(\dfrac{a-c}{b-d}\). C/M \(\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}\) = (\(\dfrac{a}{b}\))2017

MS
17 tháng 8 2017 lúc 21:48

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(1\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Thay vào tính

Bình luận (1)

Các câu hỏi tương tự
TL
Xem chi tiết
TV
Xem chi tiết
YV
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
DT
Xem chi tiết
TL
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết