Đại số lớp 7

TT

Cho a + b + c = 2017

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=\dfrac{1}{10}\)

Tính S = \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)

MS
9 tháng 7 2017 lúc 11:55

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=\dfrac{1}{10}\)

\(\Rightarrow2017\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)=\dfrac{2017}{10}\)

\(\Rightarrow\dfrac{2017}{a+b}+\dfrac{2017}{b+c}+\dfrac{2017}{a+c}=201,7\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}=201,7\)

\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{a+c}{a+c}+\dfrac{b}{a+c}=201,7\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}=201,7\)

\(\Rightarrow3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}=201,7\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}=198,7\)

Bình luận (0)
AH
9 tháng 7 2017 lúc 10:02

Ta có: \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{10}\)

\(=>2017\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2017}{10}\)

\(=>\dfrac{2017}{a+b}+\dfrac{2017}{b+c}+\dfrac{2017}{c+a}=201,7\)

Mà 2017 = a+b+c nên ta có:

\(=>\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=201,7\)

\(=>1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}=201,7\)

\(=>\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=201,7-3=198,7\)

CHÚC BẠN HỌC TỐT....

Bình luận (2)

Các câu hỏi tương tự
BN
Xem chi tiết
ND
Xem chi tiết
VT
Xem chi tiết
CH
Xem chi tiết
TH
Xem chi tiết
VT
Xem chi tiết
YV
Xem chi tiết
ND
Xem chi tiết
HT
Xem chi tiết